Accelerating Future Transhumanism, AI, nanotech, the Singularity, and extinction risk.




Looks like little Timmy is pretty screwed now! Source is Rob Sheridan.


ASIMO at War


Robotic soldiers! Isn't technology great?

Filed under: images, robotics 12 Comments


This was my first desktop after becoming a self-identified transhumanist in 2001, after reading Max More's Extropian Principles. The image is "Unity" by Anders Sandberg. See more images on Anders' raytracing page.

The caption says, "Information wants to be one."

Filed under: images 45 Comments

Police Robot

Filed under: images, robotics 83 Comments


Art by Anders Sandberg.

Filed under: images 10 Comments

Dawkins and Hermione

One of the more mesmerizing things I've seen in the last week.

Via MCS.

Gif version via Rüdiger Koch:

Filed under: images 68 Comments

Stanford Torus

Filed under: images 56 Comments

10 Interesting Futuristic Materials

1. Aerogel

Aerogel holds 15 entries in the Guinness Book of Records, including "best insulator", and "lowest-density solid". Sometimes called "frozen smoke", aerogel is made by the supercritical drying of liquid gels of alumina, chromia, tin oxide, or carbon. It's 99.8% empty space, which makes it look semi-transparent. Aerogel is a fantastic insulator -- if you had a shield of aerogel, you could easily defend yourself from a flamethrower. It stops cold, it stops heat. You could build a warm dome on the Moon. Aerogels have unbelievable surface area in their internal fractal structures -- cubes of aerogel just an inch on a side may have an internal surface area equivalent to a football field. Despite its low density, aerogel has been looked into as a component of military armor because of its insulating properties.

2. Carbon nanotubes

Carbon nanotubes are chains of carbon held together by the strongest bond in all chemistry, the sacred sp2 bond, even stronger than the sp3 bonds that hold together diamond. Carbon nanotubes have numerous remarkable physical properties, including ballistic electron transport (making them ideal for electronics) and so much tensile strength that they are the only substance that could be used to build a space elevator. The specific strength of carbon nanotubes is 48,000 kN·m/kg, the best of known materials, compared to high-carbon steel's 154 kN·m/kg. That's 300 times stronger than steel. You could build towers hundreds of kilometers high with it.

3. Metamaterials

"Metamaterial" refers to any material that gains its properties from its microscopic structure rather than bulk composition. Metamaterials have been used to create microwave invisibility cloaks, 2D invisibility cloaks, and materials with other unusual optical properties. Mother-of-pearl and butterfly wings get their rainbow color from metamaterials of biological origin. Some metamaterials have a negative refractive index, an optical property that may be used to create "superlenses" which resolve features smaller than the wavelength of light! This technology is called subwavelength imaging. Metamaterials would used in phased array optics, a technology that could render perfect holograms on a 2D display. These holograms would be so perfect that you could be standing 6 inches from the screen, looking into the "distance" with binoculars, and not even notice it's a hologram.

4. Bulk diamond

We're starting to lay down thick layers of diamond in CVD machines, hinting towards a future of bulk diamond machinery. Diamond is an ideal construction material -- it's immensely strong, light, made out of the widely available element carbon, has nearly complete thermal conductivity, and possesses among the highest melting and boiling points of all materials. By introducing trace impurities, you can make a diamond practically any color you want. Imagine a jet, with hundreds of thousands of moving parts made of fine-tuned diamond machinery. Such a craft would be more powerful than today's best fighter planes in the way an F-22 is better than the Red Baron's Fokker Dr.I.

5. Bulk fullerenes

Diamonds may be strong, but aggregated diamond nanorods (ADNRs) are stronger. Amorphous fullerene has a isothermal bulk modulus of 491 gigapascals (GPa), compared to diamond's 442 GPa. As we see in the image, the nanoscale structure of the fullerene gives it a beautiful iridescent appearance. Fullerenes can be made substantially stronger than diamond, but for greater energy cost. After a "Diamond Age", we may eventually transition to a "Fullerene Age" as our technology gets even more sophisticated.

6. Amorphous metal

Amorphous metals, also called metallic glasses, consist of metal with a disordered atomic structure. They can be twice as strong as steel. Because of their disordered structure, they can disperse impact energy more effectively than a metal crystal, which has points of weakness. Amorphous metals are made by quickly cooling molten metal before it has a chance to align itself in a crystal pattern. Amorphous metals may the military's next generation of armor. On the green side of things, amorphous metals have electronic properties that improve the efficiency of power grids by as much as 40%, saving us thousands of tons of fossil fuel emissions. Amorphous metal may also be among the best possible materials to build a sword out of, due to its high density and lack of brittleness.

7. Superalloys

A superalloy is a generic term for a metal that can operate at very high temperatures, up to about 2000 °F (1100 °C). They are popular for use in jet engine turbines. Superalloys are used for the design of more advanced oxygen-breathing aircraft, such as the ramjet and scramjet. They are less subject to "creep", which means deformation under stress. When we're flying through the sky in hypersonic craft, we'll have superalloys to thank for it.

8. Metal foam

Metal foam is what you get when you add a foaming agent, powdered titanium hydride, to molten aluminum, then let it cool. The result is a very strong substance that is relatively light, with 75-95% empty space. Because of its favorable strength-to-weight ratio, metal foams have been proposed as a construction material for space colonies. Some metal forms are so light that they float on water, which would make them excellent for building floating cities, like those analyzed by Marshall T. Savage in one of my favorite books, The Millennial Project.

9. Transparent alumina

Transparent alumina is three times stronger than steel and transparent. The number of applications for this are huge. Imagine an entire skyscraper or arcology made largely of transparent steel. The skylines of the future could look more like a series of floating black dots (opaque private rooms) rather than the monoliths of today. A huge space station made of transparent alumina could cruise in low Earth orbit without being a creepy black dot when it passes overhead. And hey... transparent swords!

10. E-textiles

If you meet up and talk to me in 2030, I'll likely be covered in electronic textiles. Why carry some electronic gadget you can easily lose when we can just wear our computers? We'll develop clothing that can constantly project the video of our choosing (unless it turns out being so annoying that we ban it). Imagine wearing a robe covered in a display that actually projects the night sky in realtime. Imagine talking to people over the "phone" just by making a hand gesture and activating electronics in your lapel, then merely thinking about what you want to say (thought-to-speech interfaces). The possibilities of e-textiles are limitless.

Filed under: futurism, images 152 Comments

A Brighter, Cleaner Future

"Arizona Bay" by Stefan Morrell

"A Brighter, Cleaner Future" by Stefan Morrell

"Beach Themed Sketch" by Robert Maschke

H/t Extropia.

Filed under: images 27 Comments

Airship & Chocobo War

While we're on the topic of artists, another of my favorites is Yoshitaka Amano. Many of you will remember him as the concept artist behind Final Fantasy.

Filed under: images 43 Comments


One of my favorite contemporary artists is Vitaly Alexius. Check out the gallery if you haven't seen it yet.

Filed under: images 59 Comments

High Cost of Force Protection

From My Confined Space. This post was just supposed to be for fun, but it inspired Brian Wang, and now me, to think about futuristic warfare a little more seriously.

I don't think the future of warfare (if there is one -- world peace is possible) lies in mechs either, unless they are extremely fast (supersonic). I would favor a mix of 1) distributed fairyfly bots and 2) massive force projection, 3) the ability for the entire army to run away very quickly when threatened.

Flying machines inspired by insect biomechanics could be very small -- fairyflies are 140 microns across. A microgram of botulinum is enough to kill ten people. If you could manufacture trillions of these, your army would be extremely hard to stop. You can't seal every soldier in a completely airtight container. Advanced (5-10+ years after MNT, if MNT is possible) bloodborne nanomachines could theoretically combat this, but they'd have to respond very quickly. A fairyfly bot could merely fire a flechette deep into the skin, and would be very difficult to locate the toxin quickly.

For massive force projection, we have nuclear weapons. The future of warfare will mainly be about be finding cleverer ways quickly manufacture and deploy them successfully (like being the Terrans in Starcraft.) Given enough dummy missiles and warhead speed, it's impossible to mount defenses. Currently, we can launch a nuclear missile to anywhere on the globe in less than an hour or so, and a bomber in several hours. This is too slow. The US is building a hypersonic bomber with a two hour response time to anywhere on the globe. Our current ballistic missiles will eventually need to be replaced by scramjet versions. Currently, scramjet technology eludes us, as big projects have pumped tons of money into the field and still failed. What is needed are completely new materials, like a diamondoid chassis.

I can imagine a dense cloud of utility fog being used as a temporary shield for nuclear missiles, throwing chunks of metal in the way of an incoming missile, but this would only work so well. A high-powered laser on the missile tip would let it plow through most obstacles on the way to the target. For this reason, I believe offense will be fundamentally more powerful than defense, to answer a question CRN sometimes brings up.

As for running away very quickly, it would help to have your entire force consist of primarily the fastest unit -- this will be different depending on whether it's the atmosphere, underwater, subterranean, or outer space you're moving through. Scramjets for air, supercavitating subs for underwater. I don't know what can move fast underground. Underground is probably safest, as nukes have the smallest blast radius there. Then again, you can move really fast in space. Water also has wonderful thermal absorption properties. I doubt many military strategists have thought much about wide-scale underwater and underground nuclear warfare, because submarines are extremely expensive and slow, and there is no vehicle that can move quickly underground (so far as I know anyway).

Filed under: images 59 Comments